Algebraic number theory - Fermat last theorem an elementary proof

Nasr-allah Hitar

January 2023

Abstract

in this paper we will provide a simple proof the Fermat conjecture using a very elementary proof.

1 introduction

let x, y, z three positive integers and p is an odd prime and (p, xyz) = 1, suppose that

$$x^p + y^p = z^p \tag{1}$$

Theorem 1 (Fermat little theorem). $(\forall p \in \mathbb{P}) : \forall n \in \mathbb{N} : n^p \equiv n[p]$

Proof. we know that $(\mathbb{Z}/p\mathbb{Z}, +, \cdot)$ field if and only if p is a prime ; suppose that p is a prime so $(\mathbb{Z}/p\mathbb{Z}, +, \cdot)$ is a field ; $\therefore (\mathbb{Z}/p\mathbb{Z}-\{0\}, \cdot)$ is an abelian group , such that $card(\mathbb{Z}/p\mathbb{Z}-\{0\}) = p-1$ therefore $(\forall a \in \mathbb{Z}/p\mathbb{Z}-\{0\})$ $a^{p-1} = 1$ that give us the lemma. \Box

2 The demonstration principle

Theorem 2. the equation

$$x^{p-1} + y^{p-1} = z^{p-1} (2)$$

has no solution for all prime p > 3

Proof. (we supposed that (xyz, p) = 1) using [thm1] we get : $x^{p-1} + y^{p-1} + z^{p-1} \equiv 3(modp)$ $\therefore 2(z^{p-1} - 1) \equiv 1(modp) \because (2)$ $\therefore 0 \equiv 1(modp) \because z^{p-1} \equiv 1(modp)$ so that give us the theorem.

Theorem 3. (dirichlet theorem) If q and l are relatively prime positive integers, then there are infinitely many primes of the form l + kq with $k \in \mathbb{Z}$

Proof. <<See the paper of Zeta relation of primes>>.

Corollary 3.1. Let n be a positive integer with p_n is the nth prime, then there are infinitely many primes of the form $p_1p_2...p_nk + 1$

Proof. let $q = p_1 p_2 \dots p_n k + 1$ and l = 1 using [Thm3] that give us the corollary.

Corollary 3.2. *let* D(n) *the set of* n *divisors.* $\mathbb{P} \subseteq \bigcup_{p \in \mathbb{P}} D(p-1)$

Proof. let's suppose that : $\exists q \in \mathbb{P} \ \forall p \in \mathbb{P} \ q \not| p - 1$ using [Cor3.1] there exist infinite prime of the form $p = (\prod_{i=1}^{q} i)k + 1$ and we have that q|p - 1 absurd!. that's give us the corollary.

Theorem 4. $\forall n \in \mathbb{N}: n > 2$ if the equation

$$(E_n): x^n + y^n = z^n \tag{3}$$

has no solution for all integers then all multiples and divisors m, d of n, (E_m) , (E_d) have no solution. Proof. let n a positive integer > 3, with (E_n) has no solution, suppose there exist a multiple m of n such that, (E_m) has a certain solution we have $\exists q \in \mathbb{N}^* n = qd, m = nq' \ (E_{dq}, E_{nq'}) \therefore (x^q)^n + (y^q)^n = (z^q)^n \ (x^{q'})^d + (y^{q'})^d = (z^{q'})^d$ have a solution $\therefore (E_n), (E_m)$ have a solution. absurd that give us the theorem. \Box

Corollary 4.1. if the equation (E_p) have no solution for all prime p then the equation (E_n) have no solution for all positive n > 3.

Proof. as we proved in [Thm4], while we have that for all prime p (E_p) has no solution then for all multiple n of p (E_n) has no solution. $(\because \bigcup_{i \in M_p} i = \mathbb{N})$ that's give us the corollary.

Corollary 4.2. the equation (1) has no solution with (xyz, p) = 1.

Proof. as corollary of [Cor3.2] and [Thm4] we find that no solution for (E_p) for all p prime.

Corollary 4.3. if n is a positive integer n > 3 and a prime $p \mid n$ such that (xyz, p) = 1 the equation (E_n) has no solution.

Proof. that's a corollary of [Thm4].

3 references

[1]-Anthony Varilly : Dirichlet's Theorem on Arithmetic Progressions , Harvard University, Cambridge, MA 02138.